2018考研线性代数核心考点:化三角形法计算行列式
考研数学
时间: 2019-03-09 11:00:12
作者: 匿名
化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。
原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。
解:首先把第1行分别乘-7、-5、-3,分别加到第2、3、4行上,再交换第2、3行的位置;把第2行分别乘2、-3后,分别加到第3、4行上;最后给第行乘1加到第4行。
猜你喜欢
-
- 03-082018年考研农学数学随机变量及其分布
- 03-082018考研数学二高数及线代考点总结
- 03-082018年考研:8个小习惯轻松逆袭考研数学
- 03-082018年考研农学数学考试大纲出来后考生如何应对?
- 03-082018考研数学复习研读真题得高分
- 03-082018考研数学拐点的定义
- 03-082018年考研数学高数常考考点介绍
- 03-082018年考研数学:可导、可微与连续关系
- 03-082018考研数学高数不等式证明方法
- 03-082018考研数学内容会超纲吗?